NASA ESR&T

INTEGRATED THERMAL PROTECTION SYSTEMS AND HEAT RESISTANT STRUCTURES

Contract N°: NND04AA85C

30th Annual Conference on Composites, Materials, and Structures
Cocoa Beach, FL
23-26 January 2006

Thierry Pichon and Marc Lacoste, Snecma Propulsion Solide - SAFRAN Group David E. Glass, NASA Langley Research Center

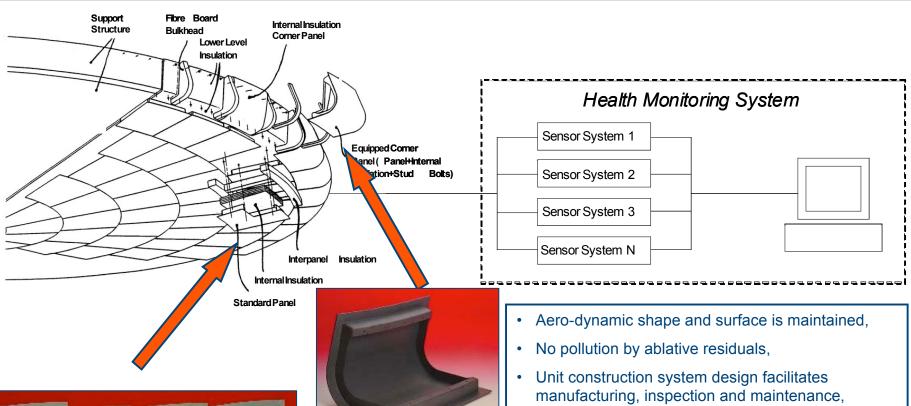
- Overview
- Trajectory and Loads
- **CAS**
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

3 DIFFERENT DESIGNS DERIVED FROM THE SAME TECHNOLOGY, ADAPTED TO 3 MISSIONS SCENARIOS

	I-TPS				
	CAS	Sepcore ®	Decelerator		
Heat flux $\leq 1 \text{ MW/m}^2$	+	-	+		
Heat flux $\geq 1 \text{ MW/m}^2$	-	+	-		
Reusability	+	Partial / multi phase	NA		
Aero -braking	+	+	+		
Aero -capture	+	+	NA		
Aero -assist	+	+	NA		
Lifting bo dy	TPS	TPS	Hot Structure		
Winged vehicle	TPS	TPS	Hot Structure		

Page: 2
Ref.: FPC 05 41 280 A
Date: 13 September 2005

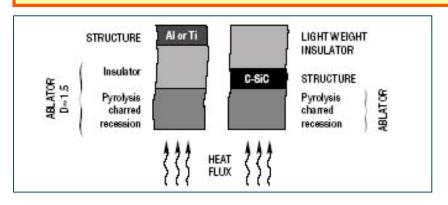
SAFRAN Group

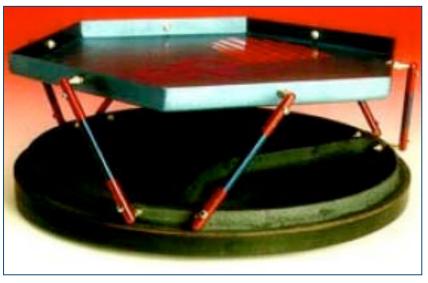

SAFRAN Group

Overview - Concept Description - CAS

- Redundancy for thermal protection functions is provided,
- Reduced mass (compared to ablators),
- MMOD resistance,
- Reduced costs.

Ref.: FPC 05 41 280 A Date: 13 September 2005





Overview - Concept Description – Sepcore

SEPCORE = CAS + ABLATOR

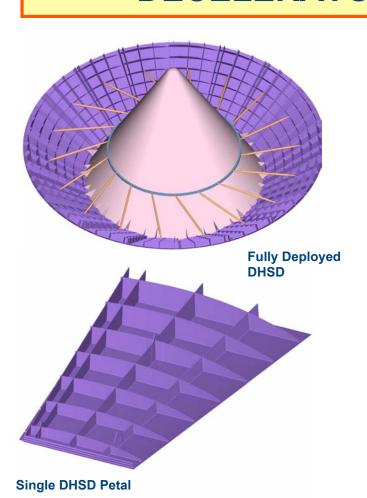
CAPSULE CONCEPT		ABLATOR	SEPCORE
Aerodynamic structure	(kg)	22	40
External heat shield	(kg)	168	70
Internal insulation	(kg)	0	10
Total mass	(kg)	190	120

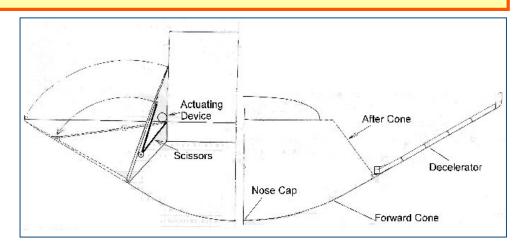
Mass ablator - Mass Sepcore® Mass ablator

≈ 30 %

- Adapted to high heat fluxes (over 1 MW/m²)
- Significant mass savings compared to ablator only
- High mechanical strength at room temperature,
- Mechanical strength maintained at high temperature
- Increased robustness
- · Partial reusability

Page : 4 Ref. : FPC 05 41 280 A Date: 13 September 2005





Overview - Concept Description – Decelerator

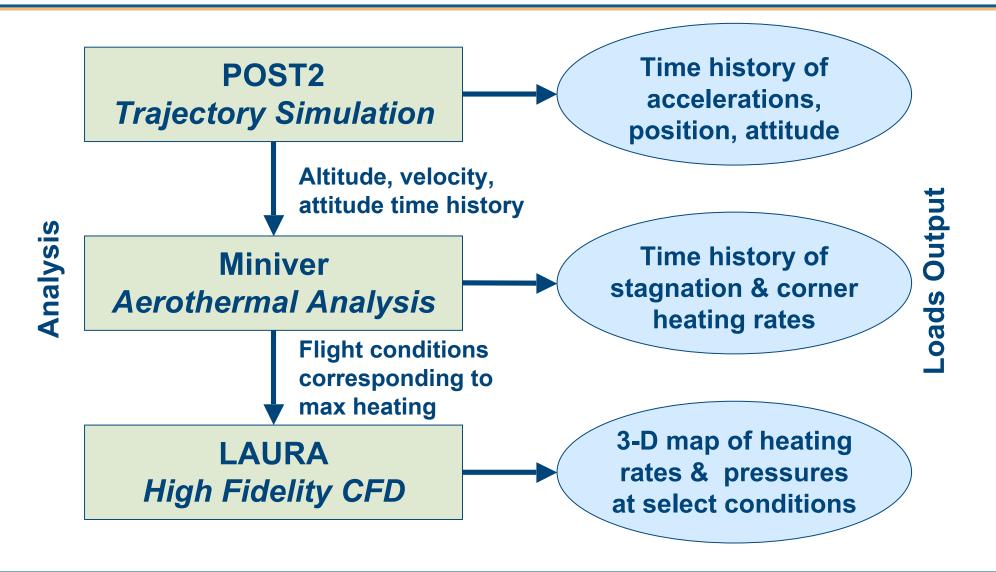
DECELERATOR = CAS + DEPLOYMENT

- Increase of aerodynamic surface to increase deceleration,
- · Compact (when stowed),
- Robustness of thermal protection function,
- Minimum mass increase
- MMOD resistance.
- Reduced costs.

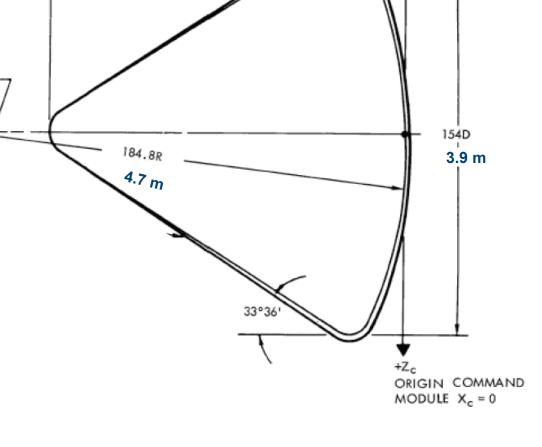
Page : 5 Ref. : FPC 05 41 280 A

Date: 13 September 2005

- Overview
- Trajectory and Loads
- **CAS**
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks



Loads Development Process


Baseline Vehicle Geometry and Characteristics

 Command module center of gravity is offset providing aerodynamic trim at nonzero angle of attack

 This provides trajectory shaping through bank angle & FOREBODY-

modulation Angle of Ballistic

	Tingic of				Danistic	Danistic
Mach	Attack	\mathbf{C}_{L}	C _D	Lift/Drag	Coefficient	Coefficient
()	(deg)	()	()	()	(lb/ft^2)	(kg/m^2)
0.4	167.14	0.24465	0.85300	0.28682	110.12	537.39
0.7	164.38	0.26325	0.98542	0.26714	95.32	465.16
0.9	161.70	0.32074	1.10652	0.30110	84.89	414.26
1.1	154.87	0.49373	1.16970	0.42208	80.30	391.86
1.2	155.13	0.47853	1.15600	0.41395	81.25	396.50
1.35	154.01	0.56282	1.27880	0.44013	73.45	358.44
1.65	153.22	0.55002	1.26570	0.43455	74.21	362.14
2.0	153.14	0.53247	1.27210	0.41858	73.84	360.34
2.4	153.62	0.50740	1.24120	0.40881	75.68	369.32
3.0	154.14	0.47883	1.21670	0.39353	77.20	376.74
4.0	156.12	0.44147	1.21480	0.36340	77.32	377.32
10.0	156.79	0.42856	1.22460	0.34996	76.70	374.30
≥ 29.5	160.06	0.38773	1.28910	0.30076	72.87	355.61

133.7

7.7R-

3.4 m

Ref.: FPC 05 41 280 A

Date: 13 September 2005

||||| Mission Definition Design Space

Departure Planet	•		Aerodynamic Mode	
Moon	Earth (air)	Direct	Ballistic	
Mars	Mars (CO ₂)	Aerocapture	Lifting	
Earth				

Moon **Direct** Earth Lifting

Mission Nomenclature

LDR - Direct Entry from Lunar Return Conditions

LAC - Aerocapture into Earth Orbit from Lunar Return Conditions

MDR - Direct Entry from Mars Return Conditions

MAC - Aerocapture from Mars Return Conditions

LEO - Entry from Low Earth Orbit

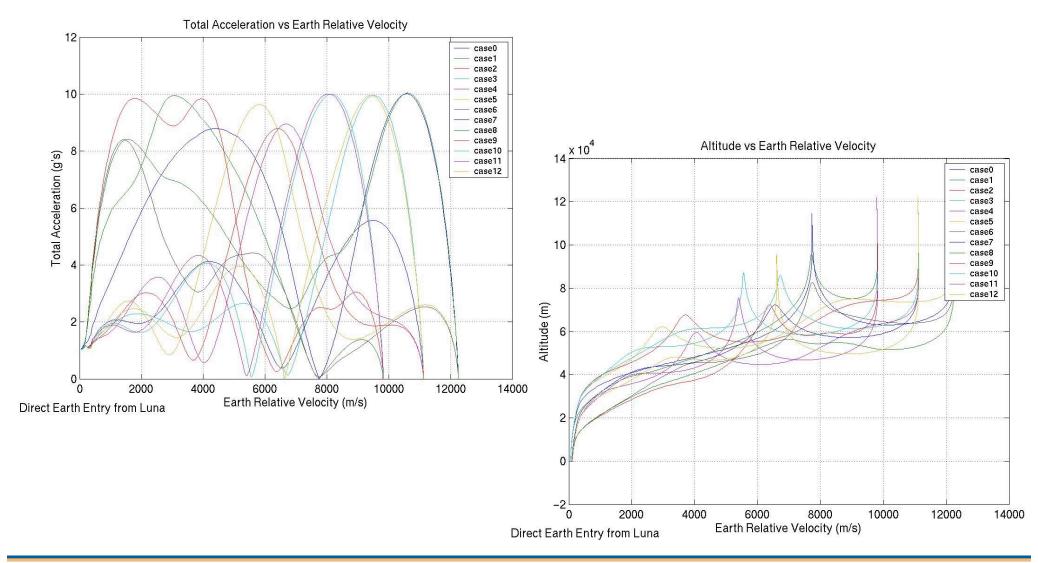
Entry into Mars (CO₂) Atmosphere not considered in trade space

■ Direct Earth Entry from Luna: Trade Matrix

	English						
case #	initial velocity (ft/s)	initial flight path angle (deg)	ballistic coefficient (~M30) (psf)				
0	36334	-5.80	73				
1	32038	-3.99	25				
2	32038	-5.21	100				
3	32038	-6.65	25				
4	32038	-7.11	100				
5	40031	-5.09	25				
6	40031	-5.61	100				
7	40030	-6.63	25				
8	40031	-7.40	100				
9	36334	-4.63	25				
10	36334	-6.73	25				
11	36334	-5.13	100				
12	36334	-7.29	100				

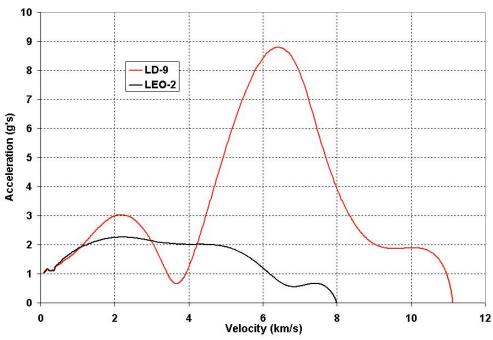
	Metric						
case #	initial velocity	initial flight path angle	ballistic coefficient (~M30)				
	(m/s)	(deg)	(kg/m^2)				
0	11075	-5.80	356				
1	9765	-3.99	122				
2	9765	-5.21	488				
3	9765	-6.65	122				
4	9765	-7.11	488				
5	12201	-5.09	122				
6	12201	-5.61	488				
7	12201	-6.63	122				
8	12201	-7.40	488				
9	11075	-4.63	122				
10	11074	-6.73	122				
11	11075	-5.13	488				
12	11075	-7.29	488				

Page : 10 Ref. : FPC 05 41 280 A Date: 13 September 2005



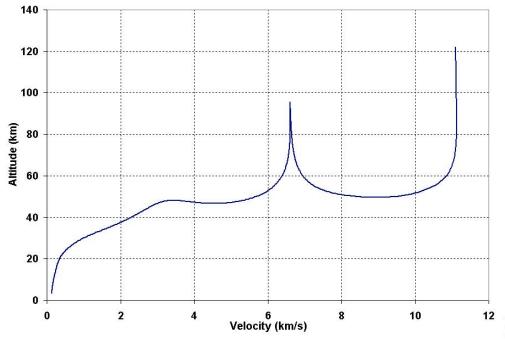
■ Direct Earth Entry from Luna: Trajectory Data

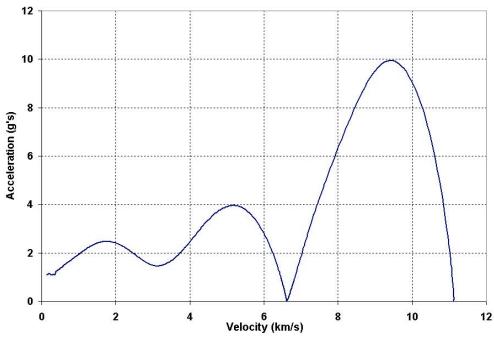




Reference Trajectory for CAS

- **Initially selected LD-9**
 - 11 km/s, 122 kg/m² ballistic coefficient, shallow entry angle
 - eventually determined to be too hot
- Selected LEO-2 as baseline
 - 8 km/s, 356 kg/m² ballistic coefficient

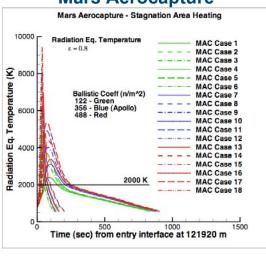


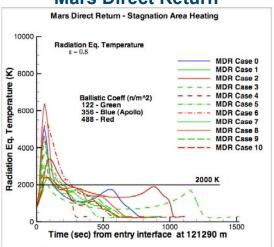


Reference Trajectory for Sepcore

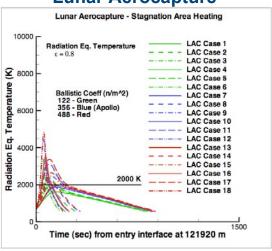
Selected LD-12

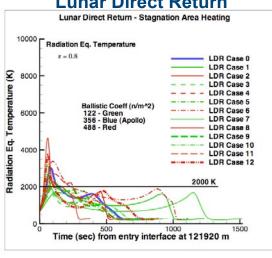
- 11 km/s entry velocity
- 488 kg/m² ballistic coefficient
- Steep entry angle



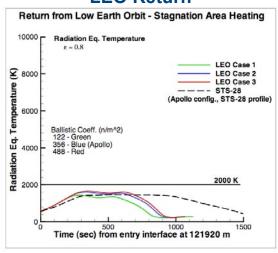


Phase I Environments Summary




Mars Direct Return

Lunar Aerocapture

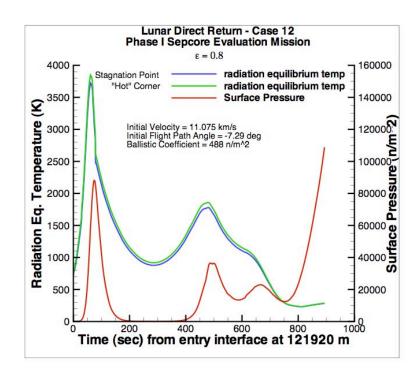


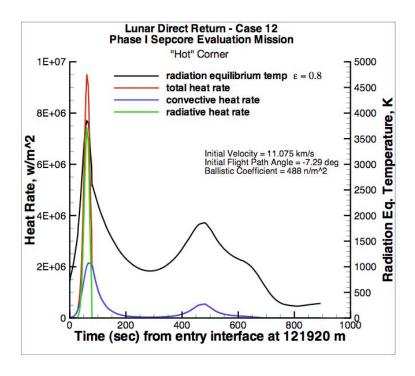
Lunar Direct Return

Radiation Equilibrium Temperature, K

LEO Return

Ref.: FPC 05 41 280 A Date: 13 September 2005





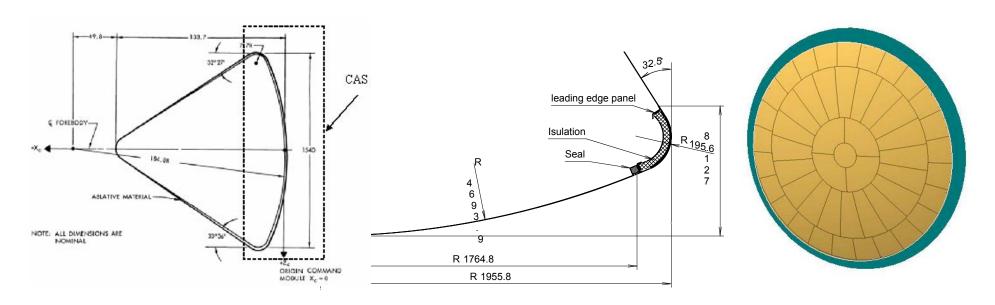
Lunar Direct Entry - Phase I Sepcore Evaluation

Case 12

"Hot" Corner vs Stagnation Pt Radiation Eq. Temperature Comparison Case 12

Relative Heating Rate Component Contribution Case 12

- Overview
- Trajectory and Loads
- **CAS**
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks



Overall CAS Geometry

- The CAS represents the blunt aft body of an Apollo-shaped re-entry vehicle
- It is mainly composed of:
 - an annular array of equipped leading-edge elements
 - a circular array of equipped panels
 - the underlying cold structure of the blunt aft body
- Preliminary panel distribution derived from past experience



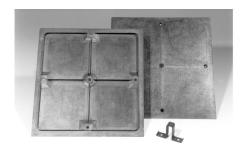


CMC Panels

Concept trade-off performed on previous designs :

Hermès

CHA



X-38 chin panel

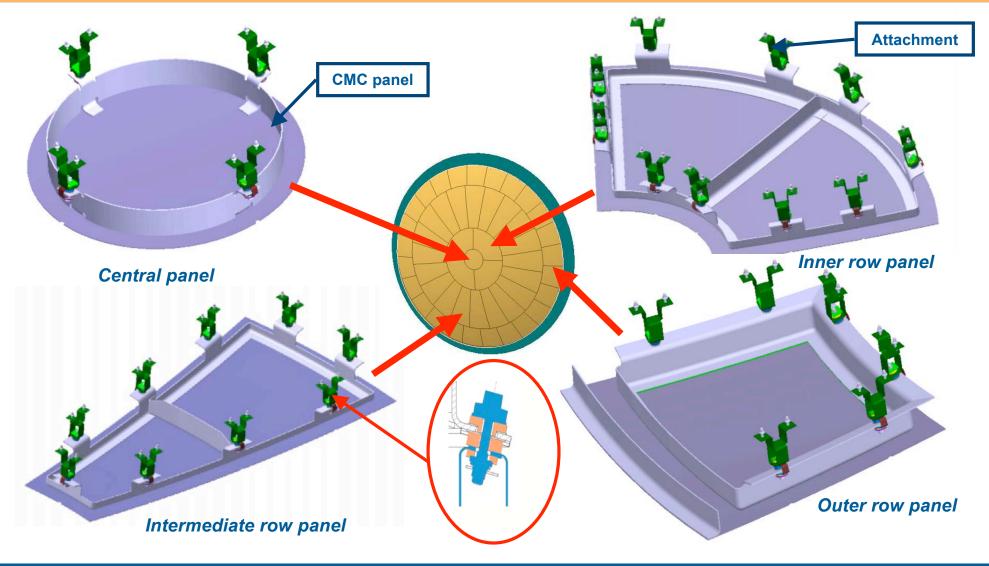
Generic Shingle

Trade-off criteria:

- -external assembly capability
- -State-of-the-art material
- -Manufacturability
- -Maintainability
- -Technical performance

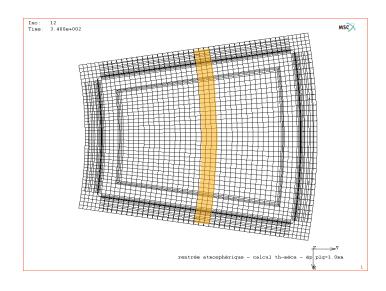
FESTIP

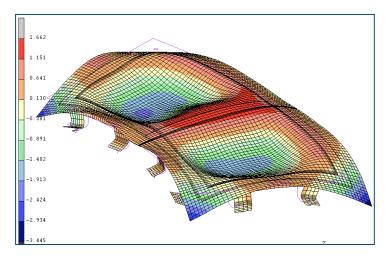
Page: 18 Ref.: FPC 05 41 280 A Date: 13 September 2005



IIIII CMC Panels Design

Page : 19 Ref. : FPC 05 41 280 A Date : 13 September 2005





CMC Panels Analysis

- ▶ Thermo-mechanical analysis to verify :
 - Geometrical definition
 - Maximum displacements
 - Allowable strains
 - Mass optimization

<u>Total heatshield mass budget</u> (w/o leading edges)

Elements	Mass (kg)
Central CMC panel	0.5
Inner row CMC panels	10.1
Intermediate row CMC panels	26.5
Outer row CMC panels	20.5
Attachments	22.9
Seals and internal insulation	88.3
TOTAL	168.8

Areal mass: 16.45 kg/m²

Page: 20 Ref.: FPC 05 41 280 A Date: 13 September 2005

Keraman® CMC Material

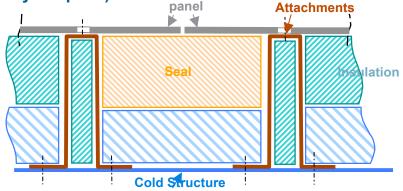
Reference: X38-V201 NASA-CRV Prototype Vehicle

Keraman® C/SiC, 2D-Carbon fiber fabric with SiC matrix Material:

Process: Gradient-CVI infiltration process

Qualification: Body Flap, Leading Edges & Chin Panel

▶ Material TRL: 8 (acc. to X-38 specification up to 12x life-cycles)

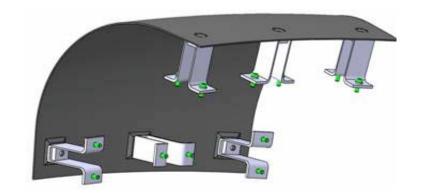


CMC panels directly attached to CMC stand-offs (i.e. X-38 Leading Edge)

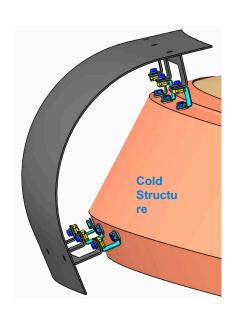
- Only with CMC fasteners directly bonded to hot surface → no risk of thermal mismatch
- C/SiC omega-shaped standoffs
- Direct access from outside (--- > accessibility & maintainability in space)
- Simple panel design
- High TRL for applications up to 1600°C

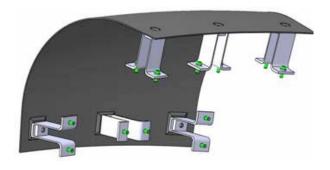
Ceramic fasteners TRL = 8

Attachment concept TRL = 5

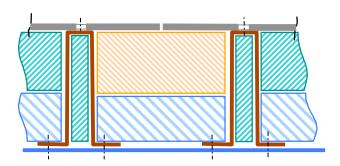


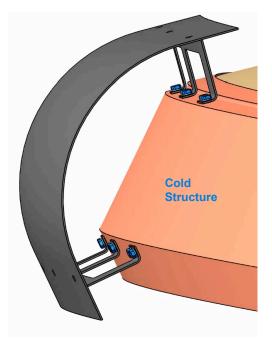
CMC

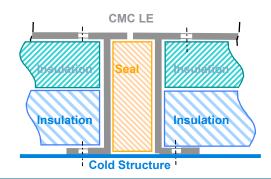




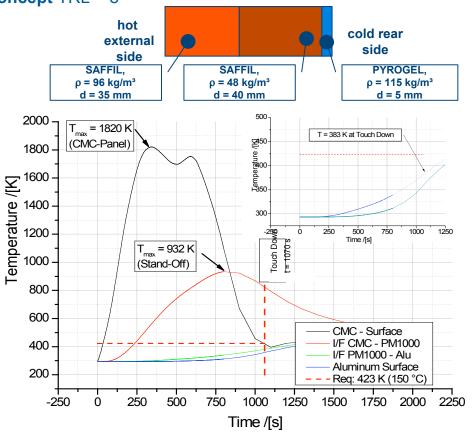
CMC

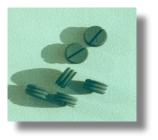


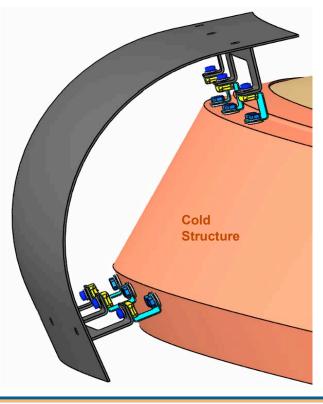

- Several concepts investigated
- Pros and cons assessed in terms of:
 - TRL level
 - Maintainability
 - Simplicity
 - Manufacturability



Courtesy MT Aerospace

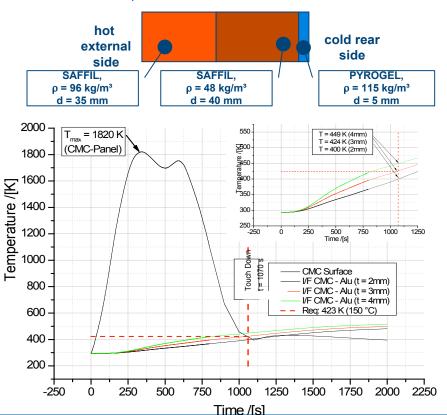


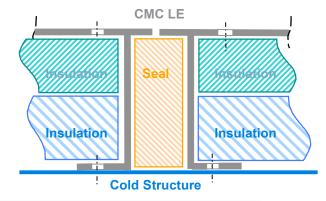


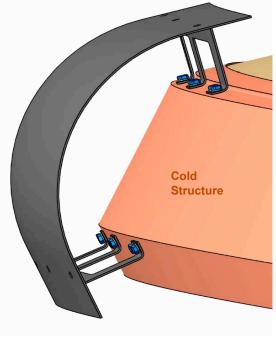


CMC panels with metallic stand-offs (similar to X-38 Nose Assembly)

- Ceramic and metallic standoffs
- Metallic fasteners and ceramic plugs
- Fixation at <u>"medium"</u> temperatures
- Attachment concept TRL = 8



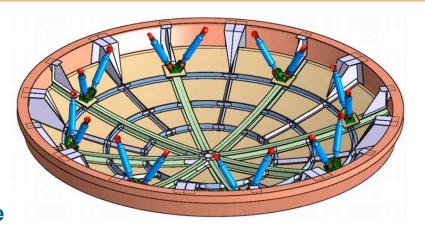




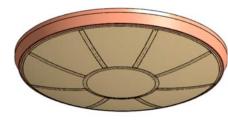
CMC panels directly attached to cold structure

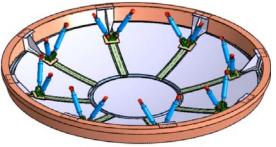
- Integral ceramic standoffs
- Metallic fasteners (off-the-shelf) and ceramic plugs attachment concept TRL = 5
- Fixation at "cold" temperatures (direct fixation on cold structure)

Date: 13 September 2005



■ Cold Structure Design


- Main characteristics:
 - Made from aluminum alloys
 - Shape of cold structure underneath panel array identical to OML


(reduced by panel height)

- **Cold structure shape adapted to Leading Edge** thermal & mechanical design needs
- **Design will match with internal insulation** lay-out and attachment concept
- Mechanical attachment to the vehicle pressurized compartment realized by means of hinge rods

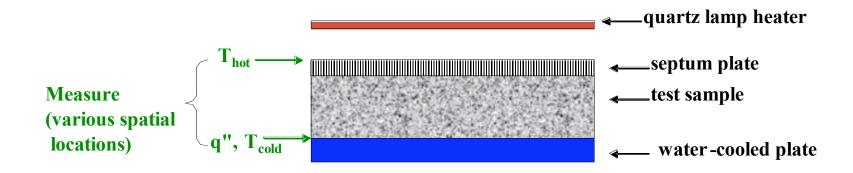
Courtesy MT Aerospace

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

IIIII Thermal Insulation

The temperature range of thermal conductivity apparatus was extended to 1250°C (replaced ceramic radiant heater with quartz lamp array heater):

Cold side temperature: 20°C (water cooled)

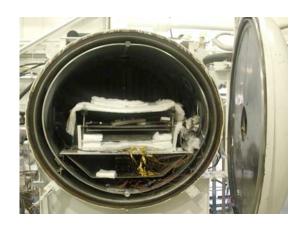

100 - 1250°C **Hot side temperature:**

Pressure: 0.0001 - 760 torr

 $30 \times 30 \times 2.5 \text{ cm}$ (12 x 12 x 1 in.) **Specimen size:**

T_{hot}, T_{cold}, q" (thin film heat flux gage), L Measure:

apparent thermal conductivity, ka Calculate:



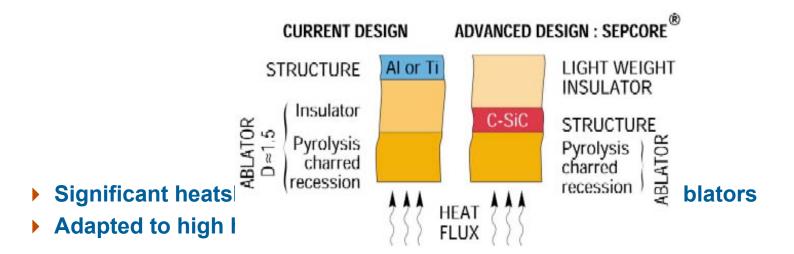
IIIII Thermal Insulation

- Performed steady-state thermal tests on selected fibrous insulation samples $350K \le T \le 1350K$, $0.0001 \le P \le 760 torr$
- Used thermal modeling in conjunction with measurements to determine pertinent parameters for gas/solid conduction and radiation heat transfer

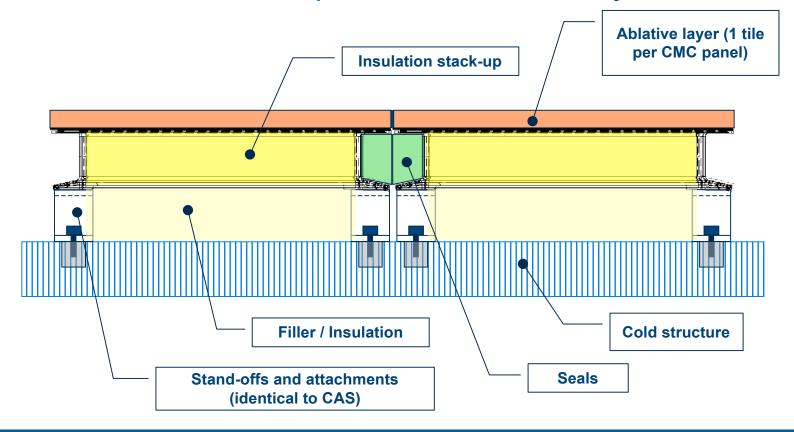
Insulation	Density (kg/m³)		Temperature limit (°C)	
Zirconia felt	240	(15 pcf)	2310	(4200°F)
Alumina blanket	96	(6 pcf)	1650	(3000°F)
Cerachem	96	(6 pcf)	1430	(2600°F)
Q-fiber felt	48, 96	(3, 6 pcf)	1000	(1800°F)

Setup in 5 x 5 ft vacuum chamber at LaRC

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks



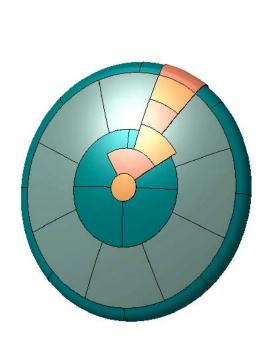
- Objective is to minimize thickness of ablator required on a TPS element by :
 - Attaching it to a hot CMC structure instead of a cold metallic structure
 - Sizing the layer of ablator so that the temperature at the CMC/ablator interface remains within CMC allowable
 - Introducing lightweight insulation at the rear side of the CMC structure

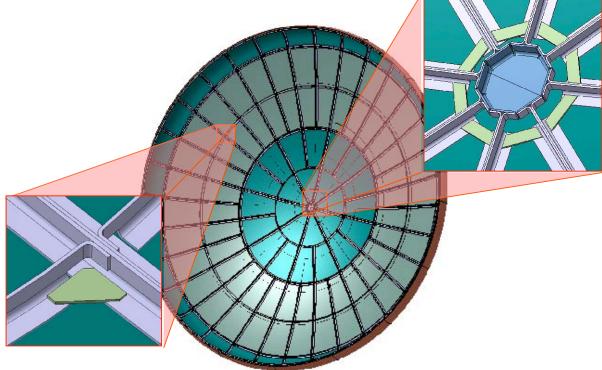


Sepcore® Architectures

Concept A:

- Ablative tiles are attached to CMC panels, fixed on a cold structure
- Minor modifications of CAS panels to attach an ablative layer

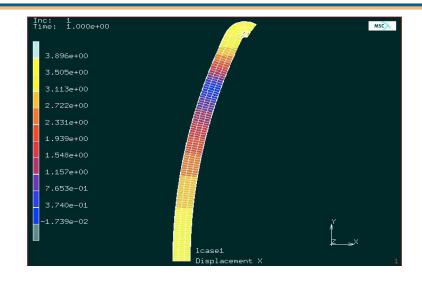



Sepcore® Architectures

Concept B:

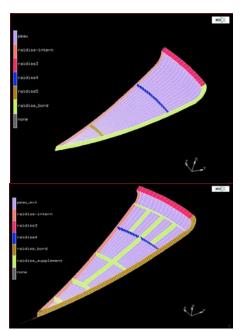
- Ablative tiles are attached to hot structure made of CMC
- Same type of CMC material than for CAS panels, but very different architecture (skin attached by screws or rivets to a web of stiffeners)

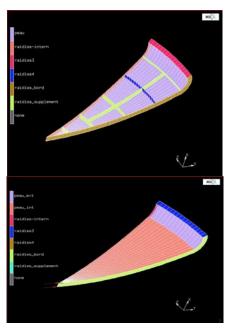
Full potential of Sepcore® can be used, leading to lower mass



- ▶ Cold structure sizing (concept A)
 - Sizing criterion : max. displacement of structure = 3 mm
 - Boundary conditions :
 - Structure clamped at R=1,3 m
 - Pressure on front face = 88 000 Pa (difference between wall pressure and atmospheric pressure
 - 2D axi-symmetric model of sandwich structure (aluminum honeycomb and C / epoxy skins)
 - Approximate weight 280 kg

	Honeycomb thickness	Skins thickness	Honeycomb density	Displac ement	Mass of structure
#1	120 mm	0.5 mm	50 kg/m3	10.0 mm	148 kg
#2	120 mm	0.5 mm	130 kg/m3	6.2 mm	332 kg
#3	120 mm	1.5 mm	50 kg/m3	4.5 mm	213 kg
#4	120 mm	1.5 mm	130 kg/m3	2.7 mm	397 kg
#5	120 mm	2.0 mm	50 kg/m3	3.5 mm	246 kg
#6	120 mm	2.0 mm	130 kg/m3	2.0 mm	430 kg
#7	80 mm	2.0 mm	50 kg/m3	4.5 mm	207 kg
#8	80 mm	2.0 mm	130 kg/m3	2.9 mm	330 kg





Sepcore® Preliminary Sizing

Hot structure sizing (concept B)

- 16 radial stiffeners + 3circum, stiffeners
- 32 radial stiffeners + 6 circum, stiffeners
- id + inner skin
- 64 radial stiffeners + 6 circum stiffeners + inner skin
- CMC Thickness = 3 mm
- Stiffener height 60 mm for I, II, III, 80 mm for IV
- Estimated mass : 250 x 1.3 = 325 kg

Inc: 1 Time: 1.000e+00	MSC
9.163e+00	
8.193e+00	
7.222e+00	
6.251e+00	
5.280e+00	
4.310e+00	
3.339e+00	
2.368e+00	
1.397e+00	
4.266e-01	
-5.442e-01	7
	lcase1
	Displacement X

	Displacement	Mass of structure
I	13.7 mm	123 kg
II	9.2 mm	137 kg
III	5.6 mm	203 kg
IV	3.9 mm	221 kg

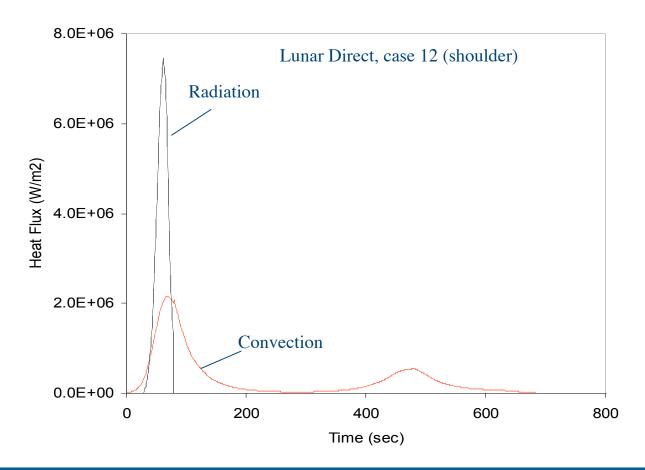
Sepcore® Preliminary Mass Budget

Apollo size heatshield, 10 MW/m²

MASS (kg)	Reference : Ablator on cold structure			Sepcore concept B	
	C / phenol*	PICA	C / phenol	PICA	C / phenol
Ablator	1,360	66	390	66	390
CMC parts	-	115	115	325	325
Insulation	-	150	150	150	150
Cold structure	280	280	280	-	-
TOTAL	1,640	611	935	541	865

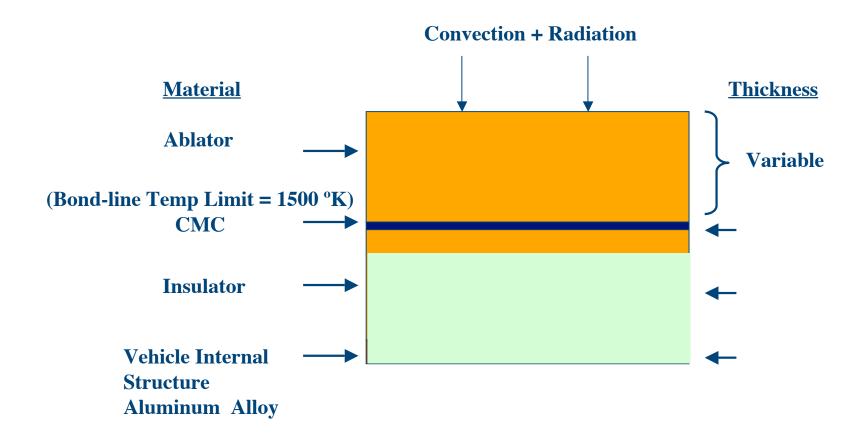
^{*} sizing made by SPS on material similar with NASA but not identical: comparison with ablator sizing of Sepcore with C/phenolic ablator

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks



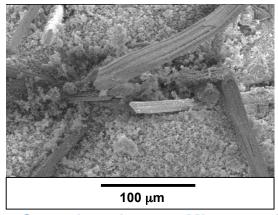
Aerothermal Environments Used for Ablator Sizing

- **Lunar Direct Entry, case No.12**
- Aerothermal environments are based on those predicted by LaRC's engineering code, not LAURA CFD



TPS Stack-up for Ablation and Thermal Response Simulation

As specified in SEPCORE Preliminary Specification developed by Snecma:



Ablative TPS Materials

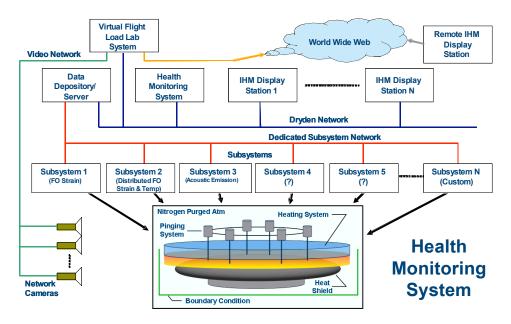
- Generic fully dense carbon phenolic composite
- **PICA (Phenolic Impregnated Carbon Ablator)**
 - **Developed by NASA ARC**
 - Used on Stardust Sample Return Capsule, will re-enter the Earth atmosphere in 2006
 - Manufactured by Fiber Materials, Inc.

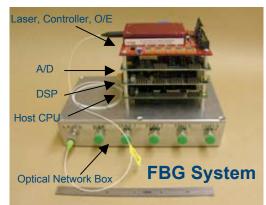
Scanning electron Micrograph of PICA material

PICA samples

Stardust spacecraft

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks




■ Health Monitoring System Development

- Established notional approach for a health monitoring system to support large-scale heat-shield testing
- Identified potential high-temperature acoustic emission (AE) sensors and potential heat shield locations
- Continued development of AE sensor multiplexing technology
- Miniaturized and increased channel count and data rate of existing Fiber-**Bragg Grating (FBG) system for strain** and temperature monitoring
- Initiated sensor attachment technique development on customer supplied C/SiC specimen

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

- ▶ The Snecma-led TPS task for NASA's Exploration Initiative began the development of three complementary TPS approaches
 - CAS
 - Sepcore
 - Deployable Decelerator
- Significant work was performed on the trajectory and loads definition, and on the CAS design
- The task was cancelled by NASA as part of a major restructuring of the Exploration Initiative

